Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Face of Tobias Ambjörnsson. Photo.

Tobias Ambjörnsson

Senior lecturer

Face of Tobias Ambjörnsson. Photo.

Single-file dynamics with different diffusion constants

Author

  • Tobias Ambjörnsson
  • Ludvig Lizana
  • Michael A. Lomholt
  • Robert J. Silbey

Summary, in English

We investigate the single-file dynamics of a tagged particle in a system consisting of N hardcore interacting particles (the particles cannot pass each other) which are diffusing in a one-dimensional system where the particles have different diffusion constants. For the two-particle case an exact result for the conditional probability density function (PDF) is obtained for arbitrary initial particle positions and all times. The two-particle PDF is used to obtain the tagged particle PDF. For the general N-particle case (N large) we perform stochastic simulations using our new computationally efficient stochastic simulation technique based on the Gillespie algorithm. We find that the mean square displacement for a tagged particle scales as the square root of time (as for identical particles) for long times, with a prefactor which depends on the diffusion constants for the particles; these results are in excellent agreement with very recent analytic predictions in the mathematics literature.

Publishing year

2008-11-14

Language

English

Publication/Series

The Journal of chemical physics

Volume

129

Issue

18

Document type

Journal article

Publisher

American Institute of Physics (AIP)

Topic

  • Other Physics Topics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0021-9606