Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Johan Rathsman. Photo.

Johan Rathsman

Senior lecturer

Johan Rathsman. Photo.

Pair production of charged Higgs bosons in association with bottom quark pairs at the Large Hadron Collider

Author

  • S. Moretti
  • J. Rathsman

Summary, in English

We study the process gg → bb̄H+H- at large tanβ, where it represents the dominant production mode of charged Higgs boson pairs in a Type II 2-Higgs doublet model, including the minimal supersymmetric standard model. The ability to select this signal would in principle enable the measurements of some triple-Higgs couplings, which in turn would help understanding the structure of the extended Higgs sector. We outline a selection procedure that should aid in disentangling the Higgs signal from the main irreducible background. This exploits a signature made up by "four b-quark jets, two light-quark jets, a τ-lepton and missing energy". While, for tan β ≳ 30 and over a significant M range above the top mass, a small signal emerges already at the Large Hadron Collider after 100 fb-1, ten times as much luminosity would be needed to perform accurate measurements of Higgs parameters in the above final state, rendering this channel a primary candidate to benefit from the so-called "Super" Large Hadron Collider option, for which a tenfold increase in instantaneous luminosity is currently being considered.

Publishing year

2004-03-01

Language

English

Pages

41-52

Publication/Series

European Physical Journal C

Volume

33

Issue

1

Document type

Journal article

Publisher

Springer

Topic

  • Subatomic Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1434-6044