Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Mattias Ohlsson

Mattias Ohlsson

Professor

Mattias Ohlsson

Value of exercise data for the interpretation of myocardial perfusion SPECT

Author

  • Henrik Haraldsson
  • Mattias Ohlsson
  • Lars Edenbrandt

Summary, in English

Background. Artificial neural networks have successfully been applied for automated interpretation of myocardial perfusion images. So far the networks have used data from the myocardial perfusion images only. The purpose of this study was to investigate whether the automated interpretation of myocardial perfusion images with the use of artificial neural networks was improved if clinical data were assessed in addition to the perfusion images. Methods and Results. A population of 229 patients who had undergone both rest-stress myocardial perfusion scintigraphy in conjunction with an exercise test and coronary angiography, with no more than 3 months elapsing between the 2 examinations, were studied. The networks were trained to detect coronary artery disease or myocardial ischemia with the use of 2 different gold standards. The first was based on coronary angiography, and the second was based on all data available (including perfusion scintigrams, coronary angiography, exercise test, resting electrocardiography, patient history, etc). The performance of the neural networks was quantified as areas under the receiver operating characteristic curves. The results showed that the neural networks trained with perfusion images performed better than those trained with exercise data (0.78 vs 0.55, P < .0001), with coronary angiography used as the gold standard. Furthermore, the networks did not improve when data from the exercise test were used as input in addition to the perfusion images (0.78 vs 0.77, P = .6). Conclusions. The results show that the clinically important information in combined exercise test and myocardial scintigraphy could be found in the perfusion images. Exercise test information did not improve upon the accuracy of automated neural network interpretation of myocardial perfusion images in a receiver operator characteristic analysis of test accuracy.

Department/s

  • Computational Biology and Biological Physics
  • Nuclear medicine, Malmö

Publishing year

2002

Language

English

Pages

169-173

Publication/Series

Journal of Nuclear Cardiology

Volume

9

Issue

2

Document type

Journal article

Publisher

Springer

Topic

  • Cardiac and Cardiovascular Systems

Keywords

  • ischemic heart disease
  • neural networks
  • computer-assisted diagnosis
  • artificial intelligence

Status

Published

Research group

  • Nuclear medicine, Malmö

ISBN/ISSN/Other

  • ISSN: 1532-6551