Mattias Ohlsson
Professor
A Novel Approach to Structure Alignment
Author
Summary, in English
A novel approach for structure alignment is presented, where the key ingredients are: (1) An error function formulation of the problem simultaneously in terms of binary (Potts) assignment variables and real-valued atomic coordinates. (2) Minimization of the error function by an iterative method, where in each iteration a mean field method is employed for the assignment variables and exact rotation/translation of atomic coordinates is performed, weighted with the corresponding assignment variables. The approach allows for extensive search of all possible alignments, including those involving arbitrary permutations. The algorithm is implemented using a C_alpha representation of the backbone and explored on different protein structure categories using the Protein Data Bank (PDB) and is successfully compared with other algorithms. The approach performs very well with modest CPU consumption and is robust with respect to choice of parameters. It is extremely generic and flexible and can handle additional user-prescribed constraints easily. Furthermore, it allows for a probabilistic interpretation of the results.
Department/s
- Computational Biology and Biological Physics
- Breastcancer-genetics
Publishing year
2000
Language
English
Publication/Series
Preprint without journal information
Full text
- Available as PDF - 238 kB
- Download statistics
Document type
Journal article
Publisher
Manne Siegbahn Institute
Topic
- Biophysics
Status
Unpublished
ISBN/ISSN/Other
- ISSN: 0348-7911