Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Profile picture of Leif Lönnblad. Photo.

Leif Lönnblad

Professor of Theoretical Physics

Profile picture of Leif Lönnblad. Photo.

Inclusive and exclusive observables from dipoles in high energy collisions


  • Christoffer Flensburg
  • Gösta Gustafson
  • Leif Lönnblad

Summary, in English

In a series of papers we have developed a Monte Carlo model based on Mueller's dipole picture of BFKL-evolution, supplemented with non-leading corrections, which has shown to be very successful in describing inclusive and semi-inclusive observables in hadron collisions. In this paper we present a further extension of this model to also describe exclusive final states. This is a highly non-trivial extension, and we have encountered many details that influence the description, and for which no guidance from perturbative QCD could be found. Hence we have had to make many choices based on semi-classical and phenomenological arguments. The end result is a new event generator called DIPSY which can be used to simulate complete minimum-bias non-diffractive hadronic collision events. Although the description ofdata from the Tevatron and LHC is not quite as good as for P ythia 8, the most advanced of the general purpose event generator programs for these processes, our results are clearly competitive, and can be expected to improve with careful tuning. In addition, as our model is very different from conventional multiple scattering scenaria, the DIPSY program can be used to gain deeper insight in the soft and semi-hard processes involved both in hadronic and heavy ion collisions.


  • Theoretical Particle Physics

Publishing year





Journal of High Energy Physics





Document type

Journal article




  • Subatomic Physics


  • Saturation
  • Diffraction
  • Small-x physics
  • Dipole Model
  • DIS




  • ISSN: 1029-8479