Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here:

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Gösta Gustafson. Photo.

Gösta Gustafson

Post retirement professor

Gösta Gustafson. Photo.

Total, inelastic and (quasi-)elastic cross sections of high energy pA and γ$^{⋆}$ A reactions with the dipole formalism


  • Gösta Gustafson
  • Leif Lönnblad
  • András Ster
  • Tamás Csörgő

Summary, in English

In order to understand the initial partonic state in proton-nucleus and electron-nucleus collisions, we investigate the total, inelastic, and (quasi-)elastic cross sections in pA and gamma-A collisions, as these observables are insensitive to possible collective effects in the final state interactions. We used as a tool the DIPSY dipole model, which is based on BFKL dynamics including non-leading effects, saturation, and colour interference, which we have extended to describe collisions of protons and virtual photons with nuclei. We present results for collisions with O, Cu, and Pb nuclei, and reproduce preliminary data on the pPb inelastic cross section at LHC by CMS and LHCb. The large NN cross section results in pA scattering that scales approximately with the area. The results are compared with conventional Glauber model calculations, and we note that the more subtle dynamical effects are more easily studied in the ratios between the total, inelastic and (quasi-)elastic cross sections. The smaller photon interaction makes the gamma-A collisions more closely proportional to A, and we see here that future electron-ion colliders would be valuable complements to the pA collisions in studies of dynamical effects from correlations, coherence and fluctuations in the initial state in high energy nuclear collisions.


  • Theoretical Particle Physics
  • Department of Astronomy and Theoretical Physics

Publishing year





Journal of High Energy Physics





Document type

Journal article




  • Subatomic Physics


  • Monte Carlo Simulations
  • Heavy Ion Phenomenology




  • ISSN: 1029-8479