Your browser has javascript turned off or blocked. This will lead to some parts of our website to not work properly or at all. Turn on javascript for best performance.

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Anders Irbäck. Photo.

Anders Irbäck

Professor

Anders Irbäck. Photo.

Finite-size scaling analysis of protein droplet formation

Author

  • Daniel Nilsson
  • Anders Irbäck

Summary, in English

The formation of biomolecular condensates inside cells often involve intrinsically disordered proteins (IDPs), and several of these IDPs are also capable of forming dropletlike dense assemblies on their own, through liquid-liquid phase separation. When modeling thermodynamic phase changes, it is well known that finite-size scaling analysis can be a valuable tool. However, to our knowledge, this approach has not been applied before to the computationally challenging problem of modeling sequence-dependent biomolecular phase separation. Here we implement finite-size scaling methods to investigate the phase behavior of two 10-bead sequences in a continuous hydrophobic-polar protein model. Combined with reversible explicit-chain Monte Carlo simulations of these sequences, finite-size scaling analysis turns out to be both feasible and rewarding, despite relying on theoretical results for asymptotically large systems. While both sequences form dense clusters at low temperature, this analysis shows that only one of them undergoes liquid-liquid phase separation. Furthermore, the transition temperature at which droplet formation sets in is observed to converge slowly with system size, so that even for our largest systems the transition is shifted by about 8%. Using finite-size scaling analysis, this shift can be estimated and corrected for.

Department/s

  • Computational Biology and Biological Physics
  • eSSENCE: The e-Science Collaboration

Publishing year

2020

Language

English

Publication/Series

Physical Review E

Volume

101

Issue

2

Document type

Journal article

Publisher

American Physical Society

Topic

  • Condensed Matter Physics

Status

Published

ISBN/ISSN/Other

  • ISSN: 2470-0045